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General Intro

Transitions to enhanced confinement regimes→ key for future
devices (ITER)
H-mode regime well studied both experimentally and theoretically
→ L-H transition explained via ’flow-shear paradigm’[Biglari
Diamond Terry ’90, Moyer ’95, Diamond, Itoh2 Hahm ’05]: flow
shear suppresses transport by shearing apart turbulent eddies.
→ suppress both heat and particle transport the same way.
For other regimes, e.g. I-mode (high energy confinement and low
particle confinement), particle and heat transport decouple→ the
shearing paradigm cannot apply for these regimes!
↪→ need to identify particle v.s. heat transport decoupling
mechanisms
One possible mechanism: nonlinear effects on the crossphase
[Terry ’01, An ’17]. Here we show direct effect of zonal flows on
the transport crossphase. (GAM ZF normally observed in
I-mode)
In this work, we only consider the effect on particle transport
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Turbulent flux and transport crossphase

the turbulent particle flux can be written:

Γturb =
√
〈n2〉

√
〈φ2〉sin δnφ

with δnφ : transport crossphase
the particle flux can be suppressed by:

suppressing the turbulence amplitudes√
〈n2〉,

√
〈φ2〉 ↘ (eddy-shearing paradigm)

and/or
suppressing the crossphase δnφ ↘
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Basic Mechanism:
E × B nonlinearity→ nonlinear crossphase shift

phase-locking diagram: ZFs
nonlinear shift the crossphase
(sketch)

evolution of transport crossphase (δ) between density and potential:

∂δ

∂t
= ω∗ − (ωk − ωE )− 1

τ
δ+ωNL

E +ωNL
∗

ωNL
E ∝ Im{ñ∗ ṽE · ∇ñ} ∼ −V 2

ZF ∆ω: nonlinear crossphase shift
∆ω: frequency mismatch
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Model

fluid model for dissipative trapped-electron mode (DTEM), based
on [Baver ’02, Newman ’94], including zonal flows:

∂n
∂t

+ vE · ∇n + (1 + αηe)
∂φ

∂y
= −ν(ñ − φ̃)

∂

∂t

[
(1− ft )φ̃−∇2

⊥φ
]

+ [1− ft (1 + αηe)]
∂φ

∂y
− vE · ∇∇2

⊥φ = ftν(ñ − φ̃)

n = ftnet + nep : effective density
φ : electric potential
ν = νei/ε : de-trapping rate
ft =
√
ε : trapping fraction

ηe = Ln/LTe

α = 3/2
normalizations : space (ρs), time: (Ln/cs)
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Model (ct’d)

This model has two nonlinearities (vE = ẑ ×∇φ):

polarization nonlinearity

ẑ ×∇φ · ∇∇2
⊥φ =

∑
k=k ′+k ′′

(k ′2⊥ − k ′′2⊥ )(ẑ× k ′) · k ′′φk ′φk ′′

ExB nonlinearity

ẑ ×∇φ · ∇n =
1
2

∑
k=k ′+k ′′

(ẑ× k ′) · k ′′(nk ′φk ′′ − φk ′nk ′′)
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Linear analysis of the DTEM model

Figure: growth-rate v.s. ky

caveat: no linear threshold in
this model

dispersion relation

ω

[
1 +

k2
⊥

1− iftω/ν

]
− ky = 0

DTEM frequency ω � ν

ωk = ky/(1 + k2
⊥)

DTEM growth-rate

γk '
ft
ν

[
αηek2

y

(1 + k2
⊥)2

+
k2
⊥k2

y

(1 + k2
⊥)3

]
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Zonal flows & zonal density

zonal flows Vzon = iqxφqeiqx + c.c.
& zonal density nzon = nqeiqx + c.c.
are nonlinearly driven by DTEM turbulence:

q2
x
∂φq

∂t
=

∑
k

(ẑ × q) · k (|k + q|2 − k2) φ∗kφk+q

∂nq

∂t
=

∑
k

(ẑ × q) · k 1
2

(
n∗kφk+q − φ∗knk+q

)
φq : zonal potential
nq : zonal density

zonal flows driven by the polarization nonlinearity & zonal density
driven by E × B nonlinearity
no dependence on ν → not affected linearly by electron-ion
collisions
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Crossphase dynamics

Write the Fourier modes in amplitude-phase form:

nk = |nk |exp(−iδk )

φk = |φk |

with δk : crossphase between density and potential

∂δk

∂t
= −ωk + (1 + αηe)ky − νtan δk + Nk

compared with [An ’17] for Hasegawa-Wakatani model:

we explicitely write the E × B nonlinearity Nk given by the triplet
correlation:

Nk =
1
|nk |2

Im{n∗k (ẑ ×∇φ · ∇n)k}
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Parametric interaction analysis: four-wave interaction

A pump DTEM at (ω0.k0) interacts with a seed zonal flow at
(ωq,q = qx x̂)
↪→ generates two sidebands at frequencies ω1,2 = ω0 ± ωq and
wavenumbers k1,2 = k0 ± q (triad resonance condition)

the pump-wave is taken as:

[
nP
φP

]
=

[
nk0
φk0

]
exp[ik0 · r− iω0t ]

the zonal flow is taken as:

VZF = iqxφq exp[iqxx − iωqt ]

pump (amp.+phase) Zonal Flows

      
sidebd 1

     
sidebd 2
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Parametric interaction analysis (ct’d)

Decomposing into amplitudes n0, φ0 and crossphase δ0:

the pump-wave is taken as:

[
nP
φP

]
=

[
n0 exp(−iδ0)

φ0

]
exp[ik0·r−iω0t ]

the zonal flow is taken as:

VZF = iqxφq exp[iqxx − iωqt ]

x

y

four-wave interaction with
approx: k0x = 0
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Zonal flows & zonal density

zonal flows Vzon = iqxφqeiqx + c.c.
& zonal density nzon = nqeiqx + c.c.
For a four-wave parametric interaction:

∂φq

∂t
= qxk0y

[
φ∗k0

φ1 − φk0φ2
∗
]

∂nq

∂t
= −qxk0y

[ 1
2

(n∗k0
φ1 − φ∗k0

n1)− 1
2

(nk0φ2
∗ − φk0n2

∗)
]

φq : zonal potential
nq : zonal density

with φk0 : pump
φ1,2 = φk0±q: potential sidebands
n1,2 = nk0±q: density sidebands
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Zonal flows & zonal density (ct’d)

using the amplitude/phase ansatz φk0 = φ0 and
nk0 = φ0 exp(−iδ0), this yields:

∂φz

∂t
= qxk0y Re{φ0φ1 + φ0φ2}

∂nz

∂t
= −qxk0y Re{ 1

2
(φ0eiδ0φ1 − φ0n1e−iδ1)− 1

2
(φ0e−iδ0φ2 − φ0n2eiδ2)}

φz = |φq| : zonal potential amplitude (∼ energy)
nz = |nq| : zonal density amplitude
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Parametric interaction (ct’d)

Parametric interaction analysis yields:

∂δ0

∂t
= (1 + αηe)k0 − ω0 − νδ0 + Λ[

φzn1

φ0
∆δ1 −

nzφ1

φ0
δ0] + Sidb2

(1 + k2
0 )
∂φ0

∂t
= ftk0(1 + αηe)φ0δ0 − k2

0 Λ(φ1 − φ2)φz − ft Λ(φzn1 − nzφ1)

+Sidb2
∂φz

∂t
= Λ(φ1 + φ2)φ0 − µφz

∂nz

∂t
= Λ(n1 − φ1)φ0 + Λ(n2 − φ2)φ0

∂∆δ1,2

∂t
= ∆ω − ν∆δ1,2 −

Λ

2
[(
φ0φz − φ0nz

n1,2
− 2

φzn1,2

φ0
)∆δ1,2] + . . .

δ0 : pump crossphase , ∆δ1,2: triad phase mismatch
φ0 : pump amplitude

φz : zonal flow amplitude



Parametric interaction (ct’d)

and the sidebands evolve as:

(1 + k2
1,2 − ft )

∂φ1,2

∂t
= ftν(n1,2 − φ1,2)± (k2

0 − q2
r )Λφ0φz

∂n1,2

∂t
= −ν(n1,2 − φ1,2)− Λ

2
(φ0nz − φ0φz)

φ1,n1 : potential & density of sideband 1
φ2,n2 : potential & density of sideband 2



Parametric interaction (ct’d)

For DTEM, the sidebands are nearly adiabatic n1 ∼ φ1 and
n2 ∼ φ2 due to trapped/passing collisions (ν)
Hence, negligeable NL drive for zonal density
without zonal density, zonal flows play a major role for DTEM
saturation
For adiabatic sidebands, combining the Eqs for potential and
density sidebands and using n1,2 ∼ φ1,2 yields:

(1 + k2
1,2)

∂φ1,2

∂t
+ γdφ1,2 = ±(k2

0 − q2
r )Λφ0φz

where we model the sideband dissipation by the damping rate γd
[Chen ’00]. For 1

φ
∂φ
∂t � γd , this yields the sideband response:

φ1 ∝ Λ

γd
φ0φz

φ2 ∝ − Λ

γd
φ0φz = φ1eiπ
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Schematic derivation of the model

Fluid DTEM model

Fourier-transformed Eqs

four-wave truncation

amplitude / crossphase decomposition

DTEM 0D model
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Predator-prey like DTEM model

Using the sideband response and nz ' 0, parametric interaction
analysis leads to the predator-prey like model :

∂δ0

∂t
= (1 + αηe)k0 − ω0 − νδ0 −

Λ2

γd
φ2

z∆δ

(1 + k2
0 )
∂φ0

∂t
= ftk0(1 + αηe)φ0δ0 − (2k2

0 + ft )
Λ2

γd
φ2

zφ0

∂φz

∂t
=

2Λ2

γd
φ2

0φz − µφz

∂∆δ

∂t
= ∆ω − ν∆δ − Λ2γd

2

[
1− 2φ2

z

γ2
d

]
∆δ

δ0 : pump crossphase between density and potential
φ0 : pump amplitude
φz : zonal flow amplitude
∆δ : triad phase mismatch
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Results: Dynamics of the model without back-reaction
on crossphase

without back-reaction
(∆δ = 0):

Typical Limit-Cycle Oscillations
between turbulence amplitude
and zonal flows
The transport crossphase is
phase-locked to its linear
value, after a short transient
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Results: Dynamics of the model with back-reaction on
crossphase

with back-reaction (∆δ 6= 0):

Limit-cycle oscillations
between turbulence amplitude,
zonal flows and transport
crossphase
The transport crossphase is
transiently suppressed by
zonal flows
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Results: Limit-cycle

with back-reaction (∆δ 6= 0):

Limit-cycle oscillations
between turbulence amplitude,
zonal flows and transport
crossphase
The transport crossphase is
transiently suppressed by
zonal flows
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Summary for this part

A four-wave interaction analysis predicts that zonal flows can
suppress the transport crossphase by nonlinearly shifting the
crossphase
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Wave kinetic approach

Disclaimer: This is work in progress, not fully rigorous
The turbulent particle flux at wavenumber k can be written:

Γk ∝ Nk sin δk

with Nk = (1 + k2)|φk |2/ωk the wave action density for DTEM.
write Nk = 〈Nk 〉+ ∆Nk (r , t) and δk = 〈δk 〉+ ∆δk (r , t)
for small crossphase δk � 1, the nonlinearly modified particle
flux is:

〈Γk 〉 ∝ Γ0 + 〈∆Nk ∆δk 〉

with Γ0 = 〈Nk 〉δlin
k

r
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Wave kinetic approach

Wave Kinetic equation [Malkov, Diamond, Rosenbluth ’01]

∂Nk

∂t
+
∂ω

∂kr

∂Nk

∂r
− ∂ω

∂r
∂Nk

∂kr
= γ̂NLNk

with the non-linear growth-rate operator satisfying:

γ̂NLNk = γkNk −∆ωN2
k

we extend the wave-kinetic equation, to include the dependence
of growth-rate on crossphase

γk = Cδk

the linearized response, noting γkNk ' Cδlin
k ∆Nk + C〈Nk 〉∆δk , is

given by:

[
∂

∂t
+ vg

∂

∂x
+ γ lin

k

]
∆Nk = kθV ′zon

∂〈Nk 〉
∂kr

− C〈Nk 〉∆δk
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Back-reaction

the back-reaction on the turbulence is described by:

∂〈Nk 〉
∂t

=
∂

∂kr

〈
kθV ′zon∆Nk

〉
+ C

〈
∆δk ∆Nk

〉
and we take the modulations in the form:

∆Nk = Nq exp(iqr r − iΩt) + c.c., and V ′zon = V ′q exp(iqr r − iΩt) + c.c.
and ∆δk = δk ,q exp(iqr r − iΩt) + c.c.

The linear response Nq is then:

Nq '
1
γ lin

k

[
kθV ′q

∂〈Nk 〉
∂kr

− Cδk ,q〈Nk 〉
]
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Wave Kinetic Equation

and we obtain the quasilinear equation for 〈Nk 〉:

∂〈Nk 〉
∂t

=
∂

∂kr

k2
θ |V ′q|2

γ lin
k

∂〈Nk 〉
∂kr

− C2

γ lin
k
|δk ,q|2〈Nk 〉

+ off− diagonal terms

1st term on RHS : shearing effect due to zonal flows
2nd term: additional damping term due to radial modulation of
the crossphase (also due to zonal flows)
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Wave kinetic approach (c’td)

In addition the nonlinearly modified particle flux is:

〈Γk 〉 = Γ0 +
〈

∆Nk ∆δk

〉
= 〈Nk 〉δlin

k −
C〈Nk 〉
γ lin

k
|δk ,q|2

Direct suppression of the particle flux due to the crossphase
modulation
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Wave kinetic approach (c’td)

In this picture, the crossphase modulation is driven by ZFs as:[
∂δk ,q

∂t
+ ν sin δk ,q

]
= kθVq

i.e after phase-locking:

δk ,q '
kθVq

ν

The particle flux thus takes the form:

〈Γk 〉 ' 〈Nk 〉δlin
k −

C〈Nk 〉
γ lin

k ν
2

k2
θ |Vq|2
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Summary and conclusions

In the framework of a fluid DTEM model, we showed that zonal
flows can directly affect the crossphase
A four-wave interaction analysis predicts that zonal flows can
suppress the transport crossphase by nonlinearly shifting the
crossphase
This is confirmed in the wave-kinetic picture, where this
stabilization is interpreted as a radial modulation of the transport
crossphase, due to zonal flows.

Open Questions
What is the effect of zonal flows on trapped electron temperature?
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